人教版六年级下册数学“鸽巢问题”的具体应用 一课时 教案

返回 相似 举报
人教版六年级下册数学“鸽巢问题”的具体应用 一课时 教案_第1页
第1页 / 共4页
人教版六年级下册数学“鸽巢问题”的具体应用 一课时 教案_第2页
第2页 / 共4页
人教版六年级下册数学“鸽巢问题”的具体应用 一课时 教案_第3页
第3页 / 共4页
亲,该文档总共4页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述:
“鸽巢问题”的具体应用教材第70、第71页。1.在了解简单的“抽屉原理”的基础上,使学生会用此原理解决简单的实际问题。 2.提高学生有根据、有条理地进行思考和推理的能力。3.通过用“抽屉原理”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再利用“抽屉原理”进行反向推理。 课件、纸盒1个,红球、蓝球各4个。1.讲月黑风高穿袜子的故事。一天晚上,毛毛房间的电灯忽然坏了,伸手不见五指。这时他又要出去,于是他就摸床底下的袜子。他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中,无法知道哪两只是颜色相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少应该拿几只袜子出去吗2.在学生猜测的基础上揭示课题。教师这节课我们利用“抽屉原理”解决生活中的实际问题。板书“抽屉原理”的具体应用1.课件出示例3。盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球2.学生自由猜测。 可能出现摸2个、3个、4个、5个等。说说你的理由。3.学生摸球验证。 按猜测的不同情况逐一验证,说明理由。摸2个球可能出现的情况1红1蓝;2个红球;2个蓝球。摸3个球可能出现的情况2红1蓝;2蓝1红;3红;3蓝。摸4个球可能出现的情况2红2蓝;3蓝1红;3红1蓝;4红;4蓝。摸5个球可能出现的情况4红1蓝;3蓝2红;3红2蓝;4蓝1红。教师通过验证,说说你们得出了什么结论。小结盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸3个球。4.引导学生把具体问题转化为“抽屉问题”。 教师生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“抽屉原理”联系起来进行思考呢1思考。“摸球问题”与“抽屉原理”有怎样的联系应该把什么看成“抽屉”有几个“抽屉”要分放的东西是什么 得出什么结论2小组讨论。3学生汇报,引导学生把具体问题转化为“抽屉问题”。教师讲解因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,把“摸球问题”转化成“抽屉问题”,即“只要分的物体个数比抽屉个数多,就能保证有一个抽屉至少有2个球”。从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个“抽屉”里各拿了1个球,不管从哪个“抽屉”里再拿1个球,都有2个球是同色的,假设最少要摸a个球,即a21b,当b1时,a就最小。所以一次至少应拿出1213个球,就能保证有2个球同色。结论要保证摸出2个同色的球,摸出的球的数量至少要比颜色种数多1。【设计意图在实际问题和“鸽巢问题”之间架起一座桥梁并不是一件容易的事。因此,教师应有意识地引导学生朝这个方向思考,慢慢去感悟。逐步引导学生把具体问题转化为“鸽巢问题”,并找出这里的“鸽巢”是什么,“鸽巢”有几个】师在本节课的学习中,你有哪些收获学生自由交流各自的收获、体会。“抽屉原理”的具体应用A类1.某班有个小书架,40个同学可以任意借阅,小书架上至少要有多少本书,才能保证至少有一个同学能借到两本或两本以上的书2.有4双不同颜色的手套,至少拿几只手套才能保证有两只手套是成对的考查知识点鸽巢问题;能力要求运用“鸽巢问题”的原理解决实际问题B类有红色、白色、黑色的筷子各10根混放在一起,如果让你闭上眼睛去摸,你至少要摸出几根才能保证有2根筷子是同色的为什么至少摸出几根,才能保证有4根同色的筷子为什么考查知识点鸽巢问题;能力要求运用“鸽巢问题”的原理解决问题课堂作业新设计A类1.将40个同学看作40个“抽屉”,书看作被分的物体,由“抽屉原理”知要保证有一个抽屉中至少有两个物体,物体数至少为40141个。即小书架上至少要有41本书。2. 5只B类 把三种颜色的筷子当作三个“抽屉”, 根据“抽屉原理”可知至少拿4根筷子,才能保证有2根同色筷子。从最特殊的情况想起,假设三种颜色的筷子各拿了3根,也就是在三个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出33110根筷子,才能保证有4根筷子同色。教材习题第70页“做一做”1. “六年级里至少有两人的生日是同一天”,这种说法是正确的。因为如果一年当中每天都有一名学生过生日闰年366天,则最多有366名学生的生日都不是在同一天,还剩下1名学生;剩下的这一名学生生日无论在哪一天,都一定会有两人的生日是相同的,即他们的生日在同一天。“六2班中至少有5人在同一个月出生的”这种说法是正确的。因为49124人1人,可知如果每4人是同一个月出生的,还剩下1人。把剩下的1人再定为其中任意一个月出生的,则六2班中至少有5人是同一个月出生的。2. 至少取5个球,可以保证取到两个颜色相同的球。第71页“练习十三”1. 若每个属相都有一位老师,这样只有12位老师,所以第13位老师的属相无论是什么,他们中至少有2个人的属相是相同的。2. 若每一镖都低于9环,5镖的成绩最高是40环,因此至少有一镖不低于9环。3. 若每一种颜色涂得都少于3个面,两种颜色涂得面的总数就少于6个面,因此至少有3个面涂着的颜色相同。4. 每次至少拿出4根才能保证一定有2根同色的筷子;如果要保证有2双筷子至少要拿出6根。5. 任意给出的3个不同的自然数,有4种可能奇数、奇数和偶数;奇数、偶数和偶数;奇数、奇数和奇数;偶数、偶数和偶数。而“奇数奇数偶数”,“偶数偶数偶数”,所以无论是哪种可能的情况下,都会出现这两种结果当中的一种,即任意给出3个不同的自然数,其中一定有2个数的和是偶数。6. 如果只涂两行的话,至少有三列的涂法是相同的。
展开阅读全文