资源描述:
第二十七章相似1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般特殊特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形的判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题包括实际问题也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】1.相似三角形的判定定理的证明.2.位似变换的坐标表示.1.初中数学从全等三角形开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形的判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源于生活,又应用到生活中去.27.1 图形的相似2课时27.2 相似三角形27.2.1相似三角形的判定3课时27.2.2相似三角形的性质1课时27.2.3相似三角形应用举例2课时6课时27.3位似2课时单元概括整合1课时27.1图形的相似1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形的概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质的过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.第课时1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生的观察能力及归纳总结能力.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.【重点】理解并掌握相似图形的概念及特征.【难点】理解相似图形的特征,掌握识别相似图形的方法.导入一欣赏图片.【课件1展示】1汽车和它的模型2大小不同的两个足球3大小不同的两张照片【引导语】上面各组图片的共同之处是什么这些图形涉及的就是我们这章要学习的相似形问题.导入二请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系导入三【复习提问】1.什么是全等形全等形的形状和大小有什么关系能够完全重合的图形是全等形,全等形的形状相同、大小相等2.判断下列图形是不是全等形如何判断下列两幅图片均是全等形.判断依据形状相同、大小相等设计意图通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习全等形的概念及全等形的判定,为本节课相似形的学习做铺垫.过渡语在上面的全等形的图片中放大或缩小其中一张图片,得到的图片与另一张图片的形状和大小有什么关系通过今天的学习,我们将认识这一类图形.一、认识相似图形思路一【思考1】以上展示的图片之间有什么特点它们的形状和大小有怎样的关系【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗相似图形一定全等吗它们之间有什么关系【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生的回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.1全等形的形状和大小之间有什么关系全等形的形状相同、大小相等2观察上述图片,它们的形状和大小之间有什么关系形状相同、大小不等3你能给出相似图形的定义吗形状相同的图形叫做相似形4全等图形一定相似吗相似图形一定全等吗全等图形一定相似,相似图形不一定全等5归纳全等图形和相似图形之间的关系.全等图形是相似图形的特例6你能举出现实生活中一些相似图形的例子吗【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.设计意图让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形【思考】1两个相似的平面图形之间有什么关系2两个相似图形的主要特征是什么3如何判定两个图形是相似图形4相似图形的大小是不是一定相等5相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的.设计意图让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.三、例题讲解过渡语我们了解了相似形的概念和基本特征,让我们一起利用所学知识判断下列图形是不是相似图形.如图是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗【思考】1在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩 相似图形填“是”或“不是”.2哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形填“是”或“不是”.解析女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.答案1相同相等是2不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形第一组第二组【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形的特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解第一组图,图1,2,5是相似图形.第二组的相似图形分别是1和8;2和6;3和7.设计意图通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.知识拓展 所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.1.相似图形的定义形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征形状相同.1.下列四个命题所有的直角三角形都相似;所有的等腰三角形都相似;所有的正方形都相似;所有的菱形都相似.其中正确的有A.2个B.3个C.4个D.1个2.下列图形是相似图形的是A.B.C.D.3.下列图形不是相似图形的是A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体的图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图4.如图,用放大镜将图形放大,应该属于A.相似变换B.平移变换C.对称变换D.旋转变换【答案与解析】1.D解析所有的正方形的形状相同,所以正确;直角三角形、等腰三角形、菱形的形状和内角有关,角度不同,图形的形状就不同,所以所有的直角三角形、所有的等腰三角形、所有的菱形不一定相似.故选D.2.A解析观察图形可得中图形的形状相同.故选A.3.C解析某人的侧面照片和正面照片形状不相同,不是相似图形.故选C.4.A解析相似图形的形状相同,其中一个图形可以看作是由另一个图形放大或缩小得到的.所以用放大镜放大图形属于相似变换.故选A.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2一、教材作业二、课后作业【基础巩固】1.下列图形,相似的一组图形是2.下列属性,是相似图形的本质属性的是A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形,不是相似图形的有A.0组B.1组C.2组D.3组4.下列四组图形,一定相似的是A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图是小华拍摄的足球的照片,下列说法不正确的是A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形. 哈哈镜中的图形和原来的图形相似图形填“是”或“不是”.7.下列各组图形两个平行四边形;两个圆;两个矩形;有一个内角是80的两个等腰三角形;两个正六边形;有一个内角是100的两个等腰三角形.其中一定是相似图形的是.8.如图,各组图形中相似的是.只填序号9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上【能力提升】11.用一个10倍的放大镜看一个15的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如已知如图1是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. 下面举两例供参考,如图2【答案与解析】1.D解析观察各图形,只有D中两个图形形状相同,大小不相等.故选D.2.C解析相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.3.B解析1中形状相同,但大小不同,符合相似形的定义;2中形状相同,但大小不同,符合相似形的定义;3中形状不相同,不符合相似形的定义;4中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.4.D解析正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.5.C解析“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.6.是不是解析放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.7.解析两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100的两个等腰三角形的形状相同,所以图形相似.故填.8.解析观察图形可得的形状相同,大小不相等.故填.9.解1中的左边图形是圆,右边图形是椭圆,形状不同;2中的左边是正六边形,右边不是正六边形,形状不同;3中的两个图形形状相同;4中的左边是长方形,右边的是正方形,形状不同;5中的两个图形形状相同;6中的左边是圆形脸,右边是椭圆形脸,形状不同,故3,5组中的图形形状相同,1,2,4,6组中的图形形状不同.10.如图.11. 15解析用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15.12.解1和3,2和13,4和11,5和10,678和9.13.解答案不唯一,如图.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格图中画相似图形,培养学生动手操作能力.本节课的重点是通过欣赏图形,观察图形的特征,归纳总结相似图形的概念和特征,并能总结全等图形与相似图形之间的关系,由于课时内容较少,学生易于掌握,在教学时用多媒体多展示一些相似图形的图片,可以用一些图形不同的角度和方向的图片,培养学生的观察能力,同时在课堂上注重培养学生自主学习的能力,教师起到引导作用即可,让学生多参与、思考、归纳,通过小组合作交流,达到掌握知识的目的.1相似图形是现实生活中广泛存在的现象,本章是在研究了图形的全等及图形的一些变换后,进一步研究的一种变换相似,本课时重点掌握相似图形的概念,可用大量的实例引入,让学生体会数学与实际生活之间的联系,通过学生观察、思考,得出相似图形的概念,但要注意教材中“形状相同的图形是相似图形”,只是对相似图形的概念的一个描述,不是定义,还要强调相似图形一定形状相同,与它的位置、颜色、大小无关;相似图形不仅仅指平面图形,也包括立体图形;两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.在教学中,要通过大量实例让学生观察、思考、归纳、辨析,从而理解和掌握相似图形的概念.2本节课内容比较简单,易理解掌握,所以在教学设计中注重培养学生的自主探究、合作交流能力,教师要大胆放手,学生通过自主学习,探索知识的形成过程,从而真正成为课堂的主人,享受成功的快乐.同时在课堂上注重培养学生的能力,如通过辨析图形是否为相似图形,探索相似图形的特征时,注重培养学生观察、分析问题、解决问题的能力.如图,下列图形,与左边的图形相似的是解析因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180后,再按一定比例缩小得到的,因此图C与左图相似.故选C.如图,下列四组图形,两个图形相似的有()A.1组B.2组C.3组D.4组解析观察图形可得,四组图形的形状都分别相同,只是大小不同,所以四组图形都是相似图形.故选D.第课时1.了解成比例线段的概念,会判断已知线段是否成比例.2.理解相似多边形的概念、性质及判定.3.能根据相似多边形的有关概念和性质进行判断及有关计算.1.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.2.通过应用成比例线段的定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.经历相似多边形的概念的形成过程,培养学生的观察、推理能力,激发学生探究及发现数学问题的兴趣.2.在探索相似多边形的性质的过程中,培养学生与他人交流、合作的意识和品质.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似多边形的概念及性质.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】探索相似多边形的性质中的“对应”关系.【教师准备】多媒体课件.【学生准备】形状相同的两个三角尺及边长不等的两个正方形.导入一如图是一块黑板,长3米,宽1.5米,加一7.5厘米宽的边框,边框外围与边框里边的矩形形状相同吗【导入语】我们凭借“直观”感觉这两个矩形的形状相同,实际上这两个矩形的形状是不相同的,通过今天的学习,我们将知道这两个矩形的形状为什么不相同.导入二如图,将ABC用2倍放大镜观察得到A1B1C1,这两个三角形相似吗这两个三角形中的对应角、对应边之间有什么关系导入三如图,将四边形ABCD用2倍放大镜观察得到四边形A1B1C1D1,这两个四边形相似吗这两个四边形中的对应角、对应边之间有什么关系设计意图通过黑板四周加宽得到的矩形与原矩形是否相似导入新课,激发学生的求知欲,为本节课学习相似多边形做好铺垫.以学生熟悉的放大镜观察三角形和四边形导入新课,学生易于理解和掌握,降低学习相似多边形的概念的难度.过渡语思考导入中的问题,我们将得到相似多边形的概念.一、成比例线段的概念1把九年级数学课本的两个邻边看作两条线段AB和CD,那么什么是这两条线段的比这两条线段的长度比叫做这两条线段的比2对于四条线段a,b,c,d,如果其中两条线段的比与另外两条线段的比相等,如abcd即adbc,我们就说这四条线段成比例.3如何判断四条线段是成比例线段四条线段中其中两条线段的比与另两条线段的比相等,就说这四条线段成比例4成比例线段的概念中应注意什么问题成比例线段的概念中的四条线段是有顺序的,如a,b,c,d是成比例线段与a,d,b,c是成比例线段得到的比例式是不同的【师生活动】学生在教师的引导下思考回答,教师课件展示成比例线段的概念.设计意图学生在教师提出的问题的引导下,层层深入地形成成比例线段的概念,学生经历概念的形成过程,加深对概念的理解,为相似多边形的概念的形成做了铺垫.二、认识相似多边形思路一1问题思考.在导入二的ABC及用2倍放大镜观察得到的A1B1C1中,对应角之间的数量关系为AA1,BB1,CC1;对应边之间的数量关系为ABA1B1,BCB1C1,ACA1C1,即.在导入三的四边形ABCD及用2倍放大镜观察得到的四边形A1B1C1D1中,对应角之间的数量关系为AA1,BB1,CC1,DD1;对应边之间的数量关系为ABA1B1,BCB1C1,CDC1D1,DAD1A1,即 .放大镜下的图形与原图形是否相似两个图形的对应角、对应边之间有什么关系相似,对应角相等,对应边成比例你能尝试给出相似多边形的定义吗并尝试用几何语言表示出来.相似比的值与两个相似多边形的顺序有关吗相似多边形的对应角、对应边有什么特点用几何语言怎样表示【师生活动】1学生独立思考后小组合作交流,共同探究相似多边形的概念,教师要给学生足够的时间让学生交流,在巡视过程中帮助学习有困难的学生,并对学生的展示作出点评,同时规范学生的语言表达.2相似多边形的定义两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.【几何语言】如图,在两个大小不同的四边形ABCD和四边形A1B1C1D1中,AA1,BB1,CC1,DD1,ABA1B1BCB1C1CDC1D1DAD1A1,因此四边形ABCD与四边形A1B1C1D1相似.3相似多边形的性质相似多边形的对应角相等,对应边成比例.如图,四边形ABCD与四边形A1B1C1D1相似, AA1,BB1,CC1,DD1,ABA1B1BCB1C1CDC1D1DAD1A1.思路二1动手操作并思考.测量课前准备的两个相似三角形两个形状相同的三角尺的各角,你得到什么结论对应角相等测量课前准备的两个相似三角形的各边,你发现了什么对应边成比例课前准备的两个正方形的各角相等吗相等,都等于90课前准备的两个正方形的各边是否成比例为什么成比例,因为两个正方形的边长分别相等,对应边的比都等于两个正方形的边长比.你能根据以上探究活动得出相似多边形的概念吗怎样用几何语言表示相似多边形的概念呢相似比与两个相似多边形的顺序有关吗相似多边形的对应角、对应边有什么特点用几何语言怎样表示【师生活动】学生在教师的引导下,边动手操作边思考回答问题,师生共同归纳出相似多边形的概念.2相似多边形的定义两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.【几何语言】如图,在两个大小不同的四边形ABCD和四边形A1B1C1D1中,AA1,BB1,CC1,DD1,ABA1B1BCB1C1CDC1D1DAD1A1,因此四边形ABCD与四边形A1B1C1D1相似.3相似多边形的性质相似多边形的对应角相等,对应边成比例.如图,四边形ABCD与四边形A1B1C1D1相似, AA1,BB1,CC1,DD1;ABA1B1BCB1C1CDC1D1DAD1A1.设计意图通过观察测量辨析归纳等数学活动,探究相似多边形的定义及性质,让学生体会由特殊到一般的数学思想方法.在探究过程中,教师通过设置层层深入的小问题,引导学生完成探究活动,降低了学生学习新知识的难度,体验了知识的形成过程,提高了学生分析问题的能力.通过几何语言表达相似多边形的定义和性质,完成文字与符号语言之间的转化,培养学生用符号语言表达数学知识的能力.三、例题讲解判断正误,正确的说明理由,错误的举出反例.1所有的矩形都相似.2所有的菱形都相似.3所有的正方形都相似.4所有的等腰直角三角形都相似.5所有的等边三角形都相似.【师生活动】学生独立思考后小组讨论交流,教师巡视过程中及时帮助有困难的学生,对学生的展示进行点评,并指出易错点,强化相似多边形的判定方法.如图,四边形ABCD与EFGH相似,求角, 的大小和EH的长度x.【思考】1相似多边形的性质是什么2根据相似多边形的性质,你能求出F,G的大小吗3四边形的内角和是多少度4由四边形的内角和定理,能否求出H的值5在相似四边形中,对应边AB与EF,AD与EH之间有什么关系6在比例式中,已知三条线段的长能否求出第四条线段的长尝试求出EH的值.【师生活动】学生在教师问题的指导下独立思考,完成解答过程,小组之间交流结果,小组代表板书过程,教师点评,归纳总结.解四边形ABCD与四边形EFGH相似,C83,AE118,ADEHABEF,即21x1824,解得x28.在四边形ABCD中,360-83-78-11881.【教师追问】利用相似多边形的性质,可以解决哪种类型的几何问题求角的大小、线段的长度;证明角相等、线段成比例等设计意图通过对例题的探究,进一步巩固相似多边形的概念和性质,同时通过小组合作交流,归纳解题方法和思路,培养学生的合作意识及分析问题的能力.知识拓展1式子abcd也可以写成abcd,通常这里的a叫做第一比例项,b叫做第二比例项,c叫做第三比例项,d叫做第四比例项.2有时在abcd中,bc,例如4669,这时我们把b或c叫做a,d的比例中项,此时b2或c2ad.3在式子abcd的两边同时乘bd,得adcb,在与比例有关的计算中,我们常通过上述变形转化字母之间的关系.4通常情况下,四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b和c,d的单位分别一致也可以.5在相似多边形中,“对应边成比例”“对应角相等”这两个条件必须同时成立时,才能说明这两个多边形是相似多边形.6相似多边形的性质可以用来确定两个多边形中未知的边的长度或未知的角的度数.7相似比的值与两个多边形的前后顺序有关.8相似比为11的两个相似多边形是全等多边形.1.成比例线段对于四条线段a,b,c,d,如果其中两条线段的比与另外两条线段的比相等,如abcd即adbc,我们就说这四条线段成比例.2.相似多边形的定义两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.3.相似多边形的性质相似多边形的对应角相等,对应边成比例.1.关于相似多边形的下列叙述正确的是A.对应边相等的多边形叫做相似多边形B.多边形的边数不同时也可以相似C.对应角、对应边都相等的多边形叫做相似多边形D.对应角相等、对应边成比例的多边形叫做相似多边形2.一个五边形的各边长分别为1,2,3,4,5,另一个和它相似的五边形的最长边的长为7,则后一个五边形的周长为A.27B.25C.21D.183.已知a,b,c,d是成比例线段,且a3 cm,b2 cm,c6 cm,则d cm.4.在比例尺为16000000的地图上,量得南京到北京的距离是15 cm,则这两地的实际距离是km.5.如图,六边形ABCDEF与六边形ABCDEF相似,已知AB5 cm,EF6 cm,CD与CD的比值为13,E125,求AB,EF的长及E的度数.【答案与解析】1.D解析两个边数相同的多边形,满足对应边成比例、对应角相等的多边形叫做相似多边形,两个条件缺一不可,所以A,C错误,D正确;边数不相等的多边形一定不相似,所以B错误.故选D.2.C解析根据相似多边形对应边成比例得相似比为57,所以边长为1,2,3,4的各边对应的边长为75,145,215,285,则周长为75145215285721.故选C.3. 4解析因为a,b,c,d是成比例线段,所以abcd,把a3 cm,b2 cm,c6 cm代入,得326d,解得d4 cm.4. 900解析设两地的实际距离为x cm.根据图上距离与实际距离的比等于比例尺,得1600000015x,解得x90000000,90000000 cm900 km.5.解六边形ABCDEF与六边形ABCDEF相似,ABABEFEFCDCD13,EE125.AB3AB15 cm,EF3EF18 cm.第2课时1.成比例线段的概念2.认识相似多边形定义性质表示3.例题讲解例1例2一、教材作业二、课后作业【基础巩固】1.下列各组中的四条线段成比例的是A.a2,b3,c2,d3B.a4,b6,c5,d10C.a2,b5,c23,d15D.a2,b3,c4,d12.下列说法正确的是A.两个平行四边形一定相似B.两个菱形一定相似C.两个矩形一定相似D.两个等腰直角三角形一定相似3.若四边形ABCD四边形ABCD,且ABAB12,已知BC8,则BC的长为A.4B.16C.24D.644.如图的两个四边形相似,则的度数是A.8
展开阅读全文