资源描述:
2019年浙江省舟山市中考数学试卷一、选择题(本题有10小题,每题3分,共30分请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3分)2019的相反数是()A2019B2019CD2(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆数据380000用科学记数法表示为()A38104B3.8104C3.8105D0.381063(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()ABCD4(3分)2019年5月26日第5届中国国际大数据产业博览会召开某市在五届数博会上的产业签约金额的折线统计图如图下列说法正确的是()A签约金额逐年增加B与上年相比,2019年的签约金额的增长量最多C签约金额的年增长速度最快的是2016年D2018年的签约金额比2017年降低了22.985(3分)如图是一个22的方阵,其中每行、每列的两数和相等,则a可以是()Atan60B1C0D120196(3分)已知四个实数a,b,c,d,若ab,cd,则()AacbdBacbdCacbdD7(3分)如图,已知O上三点A,B,C,半径OC1,ABC30,切线PA交OC延长线于点P,则PA的长为()A2BCD8(3分)中国清代算书御制数理精蕴中有这样一题“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两问马、牛各价几何”设马每匹x两,牛每头y两,根据题意可列方程组为()ABCD9(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3)作菱形OABC关于y轴的对称图形OABC,再作图形OABC关于点O的中心对称图形OABC,则点C的对应点C的坐标是()A(2,1)B(1,2)C(2,1)D(2,1)10(3分)小飞研究二次函数y(xm)2m1(m为常数)性质时如下结论这个函数图象的顶点始终在直线yx1上;存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1x22m,则y1y2;当1x2时,y随x的增大而增大,则m的取值范围为m2其中错误结论的序号是()ABCD二、填空题(共6小题,每小题4分,满分24分)11(4分)分解因式x25x 12(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 13(4分)数轴上有两个实数a,b,且a0,b0,ab0,则四个数a,b,a,b的大小关系为 (用“”号连接)14(4分)如图,在O中,弦AB1,点C在AB上移动,连结OC,过点C作CDOC交O于点D,则CD的最大值为 15(4分)在x2 40的括号中添加一个关于x的一次项,使方程有两个相等的实数根16(4分)如图,一副含30和45角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC12cm当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动当点E从点A滑动到点C时,点D运动的路径长为 cm;连接BD,则ABD的面积最大值为 cm2三、解答题(本题有8小题,第1719题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑17(6分)小明解答“先化简,再求值,其中x1”的过程如图请指出解答过程中错误步骤的序号,并写出正确的解答过程18(6分)如图,在矩形ABCD中,点E,F在对角线BD请添加一个条件,使得结论“AECF”成立,并加以证明19(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y的图象上(1)求反比例函数的表达式(2)把OAB向右平移a个单位长度,对应得到OAB当这个函数图象经过OAB一边的中点时,求a的值20(8分)在66的方格纸中,点A,B,C都在格点上,按要求画图(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法)21(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值)【信息二】上图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺)小区平均数中位数众数优秀率方差A75.1 7940277B75.1777645211根据以上信息,回答下列问题(1)求A小区50名居民成绩的中位数(2)请估计A小区500名居民成绩能超过平均数的人数(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况22(10分)某挖掘机的底座高AB0.8米,动臂BC1.2米,CD1.5米,BC与CD的固定夹角BCD140初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得CDE70(示意图2)工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4)(1)求挖掘机在初始位置时动臂BC与AB的夹角ABC的度数(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)(参考数据sin500.77,cos500.64,sin700.94,cos700.34,1.73)23(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展(1)温故如图1,在ABC中,ADBC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC6,AD4,求正方形PQMN的边长(2)操作能画出这类正方形吗小波按数学家波利亚在怎样解题中的方法进行操作如图2,任意画ABC,在AB上任取一点P,画正方形PQMN,使Q,M在BC边上,N在ABC内,连结BN并延长交AC于点N,画NMBC于点M,NPNM交AB于点P,PQBC于点Q,得到四边形PPQMN小波把线段BN称为“波利亚线”(3)推理证明图2中的四边形PQMN是正方形(4)拓展在(2)的条件下,在射线BN上截取NENM,连结EQ,EM(如图3)当tanNBM时,猜想QEM的度数,并尝试证明请帮助小波解决“温故”、“推理”、“拓展”中的问题24(12分)某农作物的生长率p与温度t()有如下关系如图1,当10t25时可近似用函数pt刻画;当25t37时可近似用函数p(th)20.4刻画(1)求h的值(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系生长率p0.20.250.30.35提前上市的天数m(天)051015请运用已学的知识,求m关于p的函数表达式;请用含t的代数式表示m(3)天气寒冷,大棚加温可改变农作物生长速度在(2)的条件下,原计划大棚恒温20时,每天的成本为200元,该作物30天后上市时,根据市场调查每提前一天上市售出(一次售完),销售额可增加600元因此给大棚继续加温,加温后每天成本w(元)与大棚温度t()之间的关系如图2问提前上市多少天时增加的利润最大并求这个最大利润(农作物上市售出后大棚暂停使用)2019年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3分)2019的相反数是()A2019B2019CD【分析】根据相反数的意义,直接可得结论【解答】解因为a的相反数是a,所以2019的相反数是2019故选A【点评】本题考查了相反数的意义理解a的相反数是a,是解决本题的关键2(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆数据380000用科学记数法表示为()A38104B3.8104C3.8105D0.38106【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解3800003.8105故选C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()ABCD【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中【解答】解从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示故选B【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图4(3分)2019年5月26日第5届中国国际大数据产业博览会召开某市在五届数博会上的产业签约金额的折线统计图如图下列说法正确的是()A签约金额逐年增加B与上年相比,2019年的签约金额的增长量最多C签约金额的年增长速度最快的是2016年D2018年的签约金额比2017年降低了22.98【分析】两条折线图一一判断即可【解答】解A、错误签约金额2017,2018年是下降的B、错误与上年相比,2016年的签约金额的增长量最多C、正确D、错误下降了9.3故选C【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型5(3分)如图是一个22的方阵,其中每行、每列的两数和相等,则a可以是()Atan60B1C0D12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案【解答】解由题意可得a|2|20,则a23,解得a1,故a可以是12019故选D【点评】此题主要考查了实数运算,正确化简各数是解题关键6(3分)已知四个实数a,b,c,d,若ab,cd,则()AacbdBacbdCacbdD【分析】直接利用等式的基本性质分别化简得出答案【解答】解ab,cd,acbd故选A【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键7(3分)如图,已知O上三点A,B,C,半径OC1,ABC30,切线PA交OC延长线于点P,则PA的长为()A2BCD【分析】连接OA,根据圆周角定理求出AOP,根据切线的性质求出OAP90,解直角三角形求出AP即可【解答】解连接OA,ABC30,AOC2ABC60,过点A作O的切线交OC的延长线于点P,OAP90,OAOC1,APOAtan601,故选B【点评】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意圆的切线垂直于过切点的半径8(3分)中国清代算书御制数理精蕴中有这样一题“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两问马、牛各价几何”设马每匹x两,牛每头y两,根据题意可列方程组为()ABCD【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案【解答】解设马每匹x两,牛每头y两,根据题意可列方程组为故选D【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键9(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3)作菱形OABC关于y轴的对称图形OABC,再作图形OABC关于点O的中心对称图形OABC,则点C的对应点C的坐标是()A(2,1)B(1,2)C(2,1)D(2,1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C的坐标,本题得以解决【解答】解点C的坐标为(2,1),点C的坐标为(2,1),点C的坐标的坐标为(2,1),故选A【点评】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答10(3分)小飞研究二次函数y(xm)2m1(m为常数)性质时如下结论这个函数图象的顶点始终在直线yx1上;存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1x22m,则y1y2;当1x2时,y随x的增大而增大,则m的取值范围为m2其中错误结论的序号是()ABCD【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可【解答】解二次函数y(xm)2m1(m为常数)顶点坐标为(m,m1)且当xm时,ym1这个函数图象的顶点始终在直线yx1上故结论正确;假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y0,得(xm)2m10,其中m1解得xm,xm顶点坐标为(m,m1),且顶点与x轴的两个交点构成等腰直角三角形|m1||m(m)|解得m0或1存在m0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论正确;x1x22m二次函数y(xm)2m1(m为常数)的对称轴为直线xm点A离对称轴的距离小于点B离对称轴的距离x1x2,且10y1y2故结论错误;当1x2时,y随x的增大而增大,且10m的取值范围为m2故结论正确故选C【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题二、填空题(共6小题,每小题4分,满分24分)11(4分)分解因式x25xx(x5)【分析】直接提取公因式x分解因式即可【解答】解x25xx(x5)故答案为x(x5)【点评】此题考查的是提取公因式分解因式,关键是找出公因式12(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果【解答】解树状图如图所示共有6个等可能的结果,甲被选中的结果有4个,甲被选中的概率为;故答案为【点评】本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键13(4分)数轴上有两个实数a,b,且a0,b0,ab0,则四个数a,b,a,b的大小关系为baab(用“”号连接)【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案【解答】解a0,b0,ab0,|b|a,ba,ba,四个数a,b,a,b的大小关系为baab故答案为baab【点评】本题考查了有理数的大小比较,掌握有理数的大小比较法则是正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键14(4分)如图,在O中,弦AB1,点C在AB上移动,连结OC,过点C作CDOC交O于点D,则CD的最大值为【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OCAB时,OC最小,根据勾股定理求出OC,代入求出即可【解答】解连接OD,如图,CDOC,COD90,CD,当OC的值最小时,CD的值最大,而OCAB时,OC最小,此时OC,CD的最大值为AB1,故答案为【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键15(4分)在x24x40的括号中添加一个关于x的一次项,使方程有两个相等的实数根【分析】要使方程有两个相等的实数根,即0,则利用根的判别式即可求得一次项的系数即可【解答】解要使方程有两个相等的实数根,则b24acb2160得b4故一次项为4x故答案为4x【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(b24ac)可以判断方程的根的情况一元二次方程的根与根的判别式 有如下关系当0时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当0 时,方程无实数根,但有2个共轭复根上述结论反过来也成立16(4分)如图,一副含30和45角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC12cm当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动当点E从点A滑动到点C时,点D运动的路径长为(2412)cm;连接BD,则ABD的面积最大值为(243612)cm2【分析】过点D作DNAC于点N,作DMBC于点M,由直角三角形的性质可得BC4cm,AB8cm,EDDF6cm,由“AAS”可证DNEDMF,可得DNDM,即点D在射线CD上移动,且当EDAC时,DD值最大,则可求点D运动的路径长,由三角形面积公式可求SADBBCACACDNBCDM24(124)DN,则EDAC时,SADB有最大值【解答】解AC12cm,A30,DEF45BC4cm,AB8cm,EDDF6cm如图,当点E沿AC方向下滑时,得EDF,过点D作DNAC于点N,作DMBC于点MMDN90,且EDF90EDNFDM,且DNEDMF90,EDDFDNEDMF(AAS)DNDM,且DNAC,DMCMCD平分ACM即点E沿AC方向下滑时,点D在射线CD上移动,当EDAC时,DD值最大,最大值EDCD(126)cm当点E从点A滑动到点C时,点D运动的路径长2(126)(2412)cm如图,连接BD,AD,SADBSABCSADCSBDCSADBBCACACDNBCDM24(124)DN当EDAC时,SADB有最大值,SADB最大值24(124)6(243612)cm2故答案为(2412),(243612)【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键三、解答题(本题有8小题,第1719题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑17(6分)小明解答“先化简,再求值,其中x1”的过程如图请指出解答过程中错误步骤的序号,并写出正确的解答过程【分析】1【解答】解1【点评】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键18(6分)如图,在矩形ABCD中,点E,F在对角线BD请添加一个条件,使得结论“AECF”成立,并加以证明【分析】根据SAS即可证明ABECDF可得AECF【解答】解添加的条件是BEDF(答案不唯一)证明四边形ABCD是矩形,ABCD,ABCD,ABDBDC,又BEDF(添加),ABECDF(SAS),AECF【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型19(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y的图象上(1)求反比例函数的表达式(2)把OAB向右平移a个单位长度,对应得到OAB当这个函数图象经过OAB一边的中点时,求a的值【分析】(1)过点A作ACOB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论反比例函数图象过AB的中点;反比例函数图象过AO的中点分别过中点作x轴的垂线,再根据30角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可【解答】解(1)过点A作ACOB于点C,OAB是等边三角形,AOB60,OCOB,B(4,0),OBOA4,OC2,AC2把点A(2,2)代入y,得k4反比例函数的解析式为y;(2)分两种情况讨论点D是AB的中点,过点D作DEx轴于点E由题意得AB4,ABE60,在RtDEB中,BD2,DE,BE1OE3,把y代入y,得x4,OE4,aOO1;如图3,点F是AO的中点,过点F作FHx轴于点H由题意得AO4,AOB60,在RtFOH中,FH,OH1把y代入y,得x4,OH4,aOO3,综上所述,a的值为1或3【点评】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键20(8分)在66的方格纸中,点A,B,C都在格点上,按要求画图(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法)【分析】(1)由勾股定理得CDABCD,BDACBD,ADBCAD;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可【解答】解(1)由勾股定理得CDABCD,BDACBD,ADBCAD;画出图形如图1所示;(2)如图2所示【点评】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键21(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值)【信息二】上图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺)小区平均数中位数众数优秀率方差A75.1757940277B75.1777645211根据以上信息,回答下列问题(1)求A小区50名居民成绩的中位数(2)请估计A小区500名居民成绩能超过平均数的人数(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数500240(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【解答】解(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500240(人),答A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【点评】本题考查的是条形统计图读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据22(10分)某挖掘机的底座高AB0.8米,动臂BC1.2米,CD1.5米,BC与CD的固定夹角BCD140初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得CDE70(示意图2)工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4)(1)求挖掘机在初始位置时动臂BC与AB的夹角ABC的度数(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)(参考数据sin500.77,cos500.64,sin700.94,cos700.34,1.73)【分析】(1)过点C作CGAM于点G,证明ABCGDE,再根据平行线的性质求得结果;(2)过点C作CPDE于点P,过点B作BQDE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DHAM于点H,过点C作CKDH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果【解答】解(1)过点C作CGAM于点G,如图1,ABAM,DEAM,ABCGDE,DCG180CDE110,BCGBCDGCD30,ABC180BCG150;(2)过点C作CPDE于点P,过点B作BQDE于点Q,交CG于点N,如图2,在RtCPD中,DPCPcos700.51(米),在RtBCN中,CNBCcos301.04(米),所以,DEDPPQQEDPCNAB2.35(米),如图3,过点D作DHAM于点H,过点C作CKDH于点K,在RtCKD中,DKCDcos501.16(米),所以,DHDKKH3.16(米),所以,DHDE0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米【点评】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形23(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展(1)温故如图1,在ABC中,ADBC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC6,AD4,求正方形PQMN的边长(2)操作能画出这类正方形吗小波按数学家波利亚在怎样解题中的方法进行操作如图2,任意画ABC,在AB上任取一点P,画正方形PQMN,使Q,M在BC边上,N在ABC内,连结BN并延长交AC于点N,画NMBC于点M,NPNM交AB于点P,PQBC于点Q,得到四边形PPQMN小波把线段BN称为“波利亚线”(3)推理证明图2中的四边形PQMN是正方形(4)拓展在(2)的条件下,在射线BN上截取NENM,连结EQ,EM(如图3)当tanNBM时,猜想QEM的度数,并尝试证明请帮助小波解决“温故”、“推理”、“拓展”中的问题【分析】(1)理由相似三角形的性质构建方程即可解决问题(2)根据题意画出图形即可(3)首先证明四边形PQMN是矩形,再证明MNPN即可(4)证明BQEBEM,推出BEQBME,由BMEEMN90,可得BEQNEM90,即可解决问题【解答】(1)解如图1中,PNBC,APNABC,,即,解得PN(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求(3)证明如图2中,由画图可知QMNPQMNPQBMN90,四边形PNMQ是矩形,MNMN,BNMBNM,,同理可得,,MNPN,MNPN,四边形PQMN是正方形(4)解如图3中,结论QEM90理由由tanNBM,可以假设MN3k,BM4k,则BN5k,BQk,BE2k,,,,QBEEBM,BQEBEM,BEQBME,NENM,NEMNME,BMEEMN90,BEQNEM90,QEM90【点评】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题24(12分)某农作物的生长率p与温度t()有如下关系如图1,当10t25时可近似用函数pt刻画;当25t37时可近似用函数p(th)20.4刻画(1)求h的值(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系生长率p0.20.250.30.35提前上市的天数m(天)051015请运用已学的知识,求m关于p的函数表达式;请用含t的代数式表示m(3)天气寒冷,大棚加温可改变农作物生长速度在(2)的条件下,原计划大棚恒温20时,每天的成本为200元,该作物30天后上市时,根据市场调查每提前一天上市售出(一次售完),销售额可增加600元因此给大棚继续加温,加温后每天成本w(元)与大棚温度t()之间的关系如图2问提前上市多少天时增加的利润最大并求这个最大利润(农作物上市售出后大棚暂停使用)【分析】(1)把(25,0.3)代入p(th)20.4,解方程即可得到结论;(2)由表格可知,m是p的一次函数,于是得到m100p20;当10t25时,pt,求得m100(t)202t40;当25t37时,根据题意即可得到m100(th)20.420(t29)220;(3)()当20t25时,()当25t37时,w300,根据二次函数的性质即可得到结论【解答】解(1)把(25,0.3)代入p(th)20.4得,0.3(25h)20.4,解得h29或h21,h25,h29;(2)由表格可知,m是p的一次函数,m100p20;当10t25时,pt,m100(t)202t40;当25t37时,p(th)20.4,m100(th)20.420(t29)220;(3)()当20t25时,由(20,200),(25,300),得w20t200,增加利润为600m20030w(30m)40t2600t4000,当t25时,增加的利润的最大值为6000元;()当25t37时,w300,增加的利润为600m20030w(30m)900()(t29)215000(t29)215000;当t29时,增加的利润最大值为15000元,综上所述,当t29时,提前上市20天,增加的利润最大值为15000元【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,此题涉及数据较多,认真审题很关键二次函数的最值问题要利用性质来解,注意自变量的取值范围
展开阅读全文