资源描述:
2019年内蒙古鄂尔多斯市中考数学试卷一、单项选择题(本大题共10题,每题3分,共30分)1(3分)有理数的相反数为()A3BCD32(3分)下面四个图形中,经过折叠能围成如图所示的几何图形的是()ABCD3(3分)禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为()A0.9107米B9107米C9106米D9107米4(3分)如图,在正方形ABCD的外侧,作等边ABE,则BED为()A15B35C45D555(3分)下列计算33a22aa(2a2)36a6a8a4a23,其中任意抽取一个,运算结果正确的概率是()ABCD6(3分)下表是抽查的某班10名同学中考体育测试成绩统计表成绩(分)30252015人数(人)2xy1若成绩的平均数为23,中位数是a,众数是b,则ab的值是()A5B2.5C2.5D57(3分)如图,在ABCD中,BDC4742,依据尺规作图的痕迹,计算的度数是()A6729B679C6629D6698(3分)下列说法正确的是()函数y中自变量x的取值范围是x若等腰三角形的两边长分别为3和7,则第三边长是3或7一个正六边形的内角和是其外角和的2倍同旁内角互补是真命题关于x的一元二次方程x2(k3)xk0有两个不相等的实数根ABCD9(3分)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EGBC,将矩形折叠,使点C与点O重合,折痕MN过点G若AB,EF2,H120,则DN的长为()ABCD210(3分)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b的值分别为()A39,26B39,26.4C38,26D38,26.4二、填空题(本大题共6题,每题3分,共18分)11(3分)计算(1)0|2|()2 12(3分)一组数据1,0,1,2,3的方差是 13(3分)如图,ABC中,ABAC,以AB为直径的O分别与BC,AC交于点D,E,连接DE,过点D作DFAC于点F若AB6,CDF15,则阴影部分的面积是 14(3分)如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”若RtABC是“好玩三角形”,且A90,则tanABC 15(3分)如图,有一条折线A1B1A2B2A3B3A4B4,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,个单位得到的,直线ykx2与此折线有2n(n1且为整数)个交点,则k的值为 16(3分)如图,在圆心角为90的扇形OAB中,OB2,P为上任意一点,过点P作PEOB于点E,设M为OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为 三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推理过程)17(8分)(1)先化简,再从1x3的整数中选取一个你喜欢的x的值代入求值(2)解不等式组,并写出该不等式组的非负整数解18(9分)某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题(1)本次共调查了 名家长,扇形统计图中“很赞同”所对应的圆心角度数是 度,并补全条形统计图(2)该校共有3600名家长,通过计算估计其中“不赞同”的家长有多少名(3)从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率19(8分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100停止加热,水温开始下降,此时水温y()与开机后用时x(min)成反比例关系,直至水温降至30,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时接通电源,水温y()与时间x(min)的关系如图所示(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50的水,请问她最多需要等待多长时间20(7分)某校组织学生到恩格贝A和康镇B进行研学活动,澄澄老师在网上查得,A和B分别位于学校D的正北和正东方向,B位于A南偏东37方向,校车从D出发,沿正北方向前往A地,行驶到15千米的E处时,导航显示,在E处北偏东45方向有一服务区C,且C位于A,B两地中点处(1)求E,A两地之间的距离;(2)校车从A地匀速行驶1小时40分钟到达B地,若这段路程限速100千米/时,计算校车是否超速(参考数据sin37,cos37,tan37)21(8分)如图,AB是O的直径,弦CDAB,垂足为H,连接AC过上一点E作EGAC交CD的延长线于点G,连接AE交CD于点F,且EGFG(1)求证EG是O的切线;(2)延长AB交GE的延长线于点M,若AH2,CH2,求OM的长22(9分)某工厂制作A,B两种手工艺品,B每天每件获利比A多105元,获利30元的A与获利240元的B数量相等(1)制作一件A和一件B分别获利多少元(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B现在在不增加工人的情况下,增加制作C已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式(3)在(1)(2)的条件下,每天制作B不少于5件当每天制作5件时,每件获利不变若每增加1件,则当天平均每件获利减少2元已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值23(11分)(1)【探究发现】如图1,EOF的顶点O在正方形ABCD两条对角线的交点处,EOF90,将EOF绕点O旋转,旋转过程中,EOF的两边分别与正方形ABCD的边BC和CD交于点E和点F(点F与点C,D不重合)则CE,CF,BC之间满足的数量关系是 (2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“BCD120的菱形ABCD”,其他条件不变,当EOF60时,上述结论是否仍然成立若成立,请给出证明;若不成立,请猜想结论并说明理由(3)【拓展延伸】如图3,BOD120,OD,OB4,OA平分BOD,AB,且OB2OA,点C是OB上一点,CAD60,求OC的长24(12分)如图,抛物线yax2bx2(a0)与x轴交于A(3,0),B(1,0)两点,与y轴交于点C,直线yx与该抛物线交于E,F两点(1)求抛物线的解析式(2)P是直线EF下方抛物线上的一个动点,作PHEF于点H,求PH的最大值(3)以点C为圆心,1为半径作圆,C上是否存在点M,使得BCM是以CM为直角边的直角三角形若存在,直接写出M点坐标;若不存在,说明理由2019年内蒙古鄂尔多斯市中考数学试卷参考答案与试题解析一、单项选择题(本大题共10题,每题3分,共30分)1(3分)有理数的相反数为()A3BCD3【考点】14相反数菁优网版权所有【分析】直接利用相反数的定义分析得出答案【解答】解有理数的相反数为故选C【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键2(3分)下面四个图形中,经过折叠能围成如图所示的几何图形的是()ABCD【考点】I7展开图折叠成几何体菁优网版权所有【分析】根据图中符号所处的位置关系作答【解答】解三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B故选B【点评】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养3(3分)禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为()A0.9107米B9107米C9106米D9107米【考点】1I科学记数法表示较大的数;1J科学记数法表示较小的数菁优网版权所有【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解0.0000004529107故选B【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4(3分)如图,在正方形ABCD的外侧,作等边ABE,则BED为()A15B35C45D55【考点】KK等边三角形的性质;LE正方形的性质菁优网版权所有【分析】根据正方形的四条边都相等,四个角都是直角,等边三角形的三条边都相等,三个角都是60求出ADAE,DAE的度数,然后根据等腰三角形两个底角相等求出AED,然后根据BEDAEBAED列式计算即可得解【解答】解在正方形ABCD中,ABAD,BAD90,在等边ABE中,ABAE,BAEAEB60,在ADE中,ADAE,DAEBADBAE9060150,所以,AED(180150)15,所以BEDAEBAED601545故选C【点评】本题考查了正方形的性质,等边三角形的性质,等边对等角的性质,是基础题,熟记各性质是解题的关键5(3分)下列计算33a22aa(2a2)36a6a8a4a23,其中任意抽取一个,运算结果正确的概率是()ABCD【考点】24立方根;47幂的乘方与积的乘方;48同底数幂的除法;X4概率公式菁优网版权所有【分析】随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数【解答】解运算结果正确的有,则运算结果正确的概率是,故选A【点评】本题考查了概率,熟练运用概率公式计算是解题的关键6(3分)下表是抽查的某班10名同学中考体育测试成绩统计表成绩(分)30252015人数(人)2xy1若成绩的平均数为23,中位数是a,众数是b,则ab的值是()A5B2.5C2.5D5【考点】W4中位数;W5众数菁优网版权所有【分析】首先根据平均数求得x、y的值,然后利用中位数及众数的定义求得a和b的值,从而求得ab的值即可【解答】解平均数为23,23,25x20y155,即5x4y31,xy7,x3,y4,中位数a22.5,b20,ab2.5,故选C【点评】本题考查了众数及中位数的定义,求得x、y的值是解答本题的关键,难度不大7(3分)如图,在ABCD中,BDC4742,依据尺规作图的痕迹,计算的度数是()A6729B679C6629D669【考点】L5平行四边形的性质;N2作图基本作图菁优网版权所有【分析】根据平行四边形的性质得ABCD,所以ABDBDC4742,再利用基本作图得到EF垂直平分BD,BE平分ABD,所以EFBD,ABEDBE2351,然后利用互余计算出BEF,从而得到的度数【解答】解四边形ABCD为平行四边形,ABCD,ABDBDC4742,由作法得EF垂直平分BD,BE平分ABD,EFBD,ABEDBEABD2351,BEFEBD90,BEF902351669,的度数是669故选D【点评】本题考查了作图基本作图熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了平行四边形的性质8(3分)下列说法正确的是()函数y中自变量x的取值范围是x若等腰三角形的两边长分别为3和7,则第三边长是3或7一个正六边形的内角和是其外角和的2倍同旁内角互补是真命题关于x的一元二次方程x2(k3)xk0有两个不相等的实数根ABCD【考点】O1命题与定理菁优网版权所有【分析】利用等腰三角形的性质、正多边形的性质、平行线的性质及一元二次方程根的判别式分别判断后即可确定正确的选项【解答】解函数y中自变量x的取值范围是x,故错误若等腰三角形的两边长分别为3和7,则第三边长是7,故错误一个正六边形的内角和是其外角和的2倍,正确两直线平行,同旁内角互补是真命题,故错误关于x的一元二次方程x2(k3)xk0有两个不相等的实数根,正确,故选D【点评】本题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、正多边形的性质、平行线的性质及一元二次方程根的判别式,难度不大9(3分)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EGBC,将矩形折叠,使点C与点O重合,折痕MN过点G若AB,EF2,H120,则DN的长为()ABCD2【考点】KM等边三角形的判定与性质;L8菱形的性质;LB矩形的性质;PB翻折变换(折叠问题)菁优网版权所有【分析】延长EG交DC于P点,连接GC、FH,则GCP为直角三角形,证明四边形OGCM为菱形,则可证CGOMCMOG,由勾股定理求得GP的值,再由梯形的中位线定理CMDN2GP,即可得出答案【解答】解延长EG交DC于P点,连接GC、FH;如图所示则CPDPCD,GCP为直角三角形,四边形EFGH是菱形,EHG120,GHEF2,OHG60,EGFH,OGGHsin602,由折叠的性质得CGOG,OMCM,MOGMCG,PG,OGCM,MOGOMC180,MCGOMC180,OMCG,四边形OGCM为平行四边形,OMCM,四边形OGCM为菱形,CMOG,根据题意得PG是梯形MCDN的中位线,DNCM2PG,DN;故选A【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键10(3分)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b的值分别为()A39,26B39,26.4C38,26D38,26.4【考点】FH一次函数的应用菁优网版权所有【分析】由图象可知,两车经过18秒相遇,继续行驶301812秒,两车的距离为24米,可求速度和为24122米/秒,AB距离为18236米,在快车到B地停留3秒,两车的距离增加(b24)米,慢车的速度为米/秒,而根据题意b米的距离相当于慢车行驶1812333秒的路程,故速度为米/秒,因此,,解得b26.4米,从而可求慢车速度为0.8米/秒,快车速度为20.81.2米/秒,快车返回追至两车距离为24米的时间(26.424)(1.20.8)6秒,因此a33639秒【解答】解速度和为24(3018)2米/秒,由题意得,解得b26.4,因此慢车速度为0.8米/秒,快车速度为20.81.2米/秒,快车返回追至两车距离为24米的时间(26.424)(1.20.8)6秒,因此a33639秒故选B【点评】考查函数图象的识图能力,即从图象中获取有用的信息,熟练掌握速度、时间、路程之间的关系是解决问题的前提,追及问题和相遇问题的数量关系再本题中得到充分应用二、填空题(本大题共6题,每题3分,共18分)11(3分)计算(1)0|2|()21【考点】2C实数的运算;6E零指数幂;6F负整数指数幂菁优网版权所有【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可【解答】解(1)0|2|()21241故答案为1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用12(3分)一组数据1,0,1,2,3的方差是2【考点】W7方差菁优网版权所有【分析】利用方差的定义求解方差S2(x1)2(x2)2(xn)2【解答】解数据的平均数(10123)1,方差s2(11)2(01)2(11)2(21)2(31)22故填2【点评】本题考查了方差的定义一般地设n个数据,x1,x2,xn,平均数(x1x2x3xn),方差S2(x1)2(x2)2(xn)213(3分)如图,ABC中,ABAC,以AB为直径的O分别与BC,AC交于点D,E,连接DE,过点D作DFAC于点F若AB6,CDF15,则阴影部分的面积是3【考点】KH等腰三角形的性质;KO含30度角的直角三角形;KQ勾股定理;M2垂径定理;M5圆周角定理;MO扇形面积的计算菁优网版权所有【分析】根据S阴影部分S扇形OAESOAE即可求解【解答】解连接OE,CDF15,C75,OAE30OEA,AOE120,SOAEAEOEsinOEA2OEcosOEAOEsinOEA,S阴影部分S扇形OAESOAE323故答案3【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积14(3分)如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”若RtABC是“好玩三角形”,且A90,则tanABC或【考点】T7解直角三角形菁优网版权所有【分析】分两种情形分别画出图形求解即可【解答】解如图1中,在RtABC中,A90,CE是ABC的中线,设ABEC2a,则AEEBa,ACa,tanABC如图2中,在RtABC中,A90,BE是ABC的中线,设EBAC2a,则AEECa,ABa,tanABC,故答案为或【点评】本题考查解直角三角形,三角形的中线等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考常考题型15(3分)如图,有一条折线A1B1A2B2A3B3A4B4,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,个单位得到的,直线ykx2与此折线有2n(n1且为整数)个交点,则k的值为【考点】D2规律型点的坐标;F8一次函数图象上点的坐标特征;Q3坐标与图形变化平移菁优网版权所有【分析】由点A1、A2的坐标,结合平移的距离即可得出点An的坐标,再由直线ykx2与此折线恰有2n(n1,且为整数)个交点,即可得出点An1(8n,0)在直线ykx2上,依据依此函数图象上点的坐标特征,即可求出k值【解答】解A1(0,0),A2(8,0),A3(16,0),A4(24,0),,An(8n8,0)直线ykx2与此折线恰有2n(n1且为整数)个交点,点An1(8n,0)在直线ykx2上,08nk2,解得k故答案为【点评】本题考查了一次函数图象上点的坐标特征以及坐标与图形变化中的平移,根据一次函数图象上点的坐标特征结合点An的坐标,找出08nk2是解题的关键16(3分)如图,在圆心角为90的扇形OAB中,OB2,P为上任意一点,过点P作PEOB于点E,设M为OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为【考点】M5圆周角定理;MI三角形的内切圆与内心;O4轨迹菁优网版权所有【分析】如图,以OB为斜边在OB的右边作等腰RtPOB,以P为圆心PB为半径作P,在优弧OB上取一点H,连接HB,HO,BM,MP首先证明点M的运动轨迹是,利用弧长公式计算即可【解答】解如图,以OB为斜边在OB的右边作等腰RtPOB,以P为圆心PB为半径作P,在优弧OB上取一点H,连接HB,HO,BM,MPPEOB,PEO90,点M是内心,OMP135,OBOP,MOBMOP,OMOM,OMBOMP(SAS),OMBOMP135,HBPO45,HOMB180,O,M,B,H四点共圆,点M的运动轨迹是,内心M所经过的路径长,故答案为【点评】本题属于轨迹,圆周角定理,三角形的内切圆与内心等知识,解题的关键是正确寻找点M的运动轨迹,属于中考填空题中的压轴题三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推理过程)17(8分)(1)先化简,再从1x3的整数中选取一个你喜欢的x的值代入求值(2)解不等式组,并写出该不等式组的非负整数解【考点】6D分式的化简求值;CB解一元一次不等式组;CC一元一次不等式组的整数解菁优网版权所有【分析】(1)根据分式的除法和加法可以化简题目中的式子,然后从1x3的整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题;(2)根据解一元一次不等式组的方法可以解答本题【解答】解(1),当x3时,原式1;(2),由不等式,得x,由不等式,得x1,故原不等式组的解集是1x,该不等式组的非负整数解是0,1【点评】本题考查分式的化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法18(9分)某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题(1)本次共调查了200名家长,扇形统计图中“很赞同”所对应的圆心角度数是27度,并补全条形统计图(2)该校共有3600名家长,通过计算估计其中“不赞同”的家长有多少名(3)从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率【考点】V5用样本估计总体;VB扇形统计图;VC条形统计图;X6列表法与树状图法菁优网版权所有【分析】(1)根据无所谓人数及其所占百分比可得总人数,360乘以很赞同人数所占比例可得其圆心角度数,由各部分人数之和等于总人数求出不赞同的人数即可补全图形;(2)用总人数乘以样本中不赞同人数所占比例即可得;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可【解答】解(1)本次调查的家长人数为4522.5200(人),扇形统计图中“很赞同”所对应的圆心角度数是36027,不赞同的人数为200(155045)90(人),补全图形如下故答案为200、27;(2)估计其中“不赞同”的家长有36001620(人);(3)用A表示男生,B表示女生,画图如下共有20种情况,一男一女的情况是12种,则刚好抽到一男一女的概率是【点评】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19(8分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100停止加热,水温开始下降,此时水温y()与开机后用时x(min)成反比例关系,直至水温降至30,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时接通电源,水温y()与时间x(min)的关系如图所示(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50的水,请问她最多需要等待多长时间【考点】GA反比例函数的应用菁优网版权所有【分析】(1)根据题意和函数图象可以求得a的值;根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题;【解答】解(1)观察图象,可知当x7(min)时,水温y100()当0 x7时,设y关于x的函数关系式为ykxb,,得,即当0 x7时,y关于x的函数关系式为y10 x30,当x7时,设y,100,得a700,即当x7时,y关于x的函数关系式为y,当y30时,x,y与x的函数关系式为y,y与x的函数关系式每分钟重复出现一次;(2)将y50代入y10 x30,得x2,将y50代入y,得x14,14212,12怡萱同学想喝高于50的水,她最多需要等待min;【点评】本题考查反比例函数的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答20(7分)某校组织学生到恩格贝A和康镇B进行研学活动,澄澄老师在网上查得,A和B分别位于学校D的正北和正东方向,B位于A南偏东37方向,校车从D出发,沿正北方向前往A地,行驶到15千米的E处时,导航显示,在E处北偏东45方向有一服务区C,且C位于A,B两地中点处(1)求E,A两地之间的距离;(2)校车从A地匀速行驶1小时40分钟到达B地,若这段路程限速100千米/时,计算校车是否超速(参考数据sin37,cos37,tan37)【考点】TB解直角三角形的应用方向角问题菁优网版权所有【分析】(1)作CHAD于H由题意HEC45,可得CHEH,设CHHEx千米,则AHCH(x15)千米,构建方程即可解决问题(2)求出BA的长,再求出校车的速度即可判断【解答】解(1)如图,作CHAD于H由题意HEC45,可得CHEH,设CHHEx千米,点C是AB的中点,CHBD,AHHD(x15)千米,在RtACH中,tan37,,x45,CH45(千米),AH60(千米),AD120(千米),EAADDE12015105(千米)(2)在RtACH中,AC75(千米),AB2AC150(千米),15090千米/小时,90100,校车没有超速【点评】本题考查解直角三角形的应用方向角,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型21(8分)如图,AB是O的直径,弦CDAB,垂足为H,连接AC过上一点E作EGAC交CD的延长线于点G,连接AE交CD于点F,且EGFG(1)求证EG是O的切线;(2)延长AB交GE的延长线于点M,若AH2,CH2,求OM的长【考点】KQ勾股定理;M2垂径定理;ME切线的判定与性质菁优网版权所有【分析】(1)连接OE,如图,通过证明GEAOEA90得到OEGE,然后根据切线的判定定理得到EG是O的切线;(2)连接OC,如图,设O的半径为r,则OCr,OHr2,利用勾股定理得到(r2)2(2)2r2,解得r3,然后证明RtOEMRtCHA,再利用相似比计算OM的长【解答】(1)证明连接OE,如图,GEGF,GEFGFE,而GFEAFH,GEFAFH,ABCD,OAFAFH90,GEAOAF90,OAOE,OEAOAF,GEAOEA90,即GEO90,OEGE,EG是O的切线;(2)解连接OC,如图,设O的半径为r,则OCr,OHr2,在RtOCH中,(r2)2(2)2r2,解得r3,在RtACH中,AC2,ACGE,MCAH,RtOEMRtCHA,,即,OM【点评】本题考查了切线的判断与性质圆的切线垂直于经过切点的半径经过半径的外端且垂直于这条半径的直线是圆的切线判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径也考查了勾股定理22(9分)某工厂制作A,B两种手工艺品,B每天每件获利比A多105元,获利30元的A与获利240元的B数量相等(1)制作一件A和一件B分别获利多少元(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B现在在不增加工人的情况下,增加制作C已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式(3)在(1)(2)的条件下,每天制作B不少于5件当每天制作5件时,每件获利不变若每增加1件,则当天平均每件获利减少2元已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值【考点】AD一元二次方程的应用;B7分式方程的应用;HE二次函数的应用菁优网版权所有【分析】(1)根据数量关系,设未知数,列分式方程即可求出,(2)A、C的工艺品数量相等,由工作效率的关系可得,生产C产品的人数是A产品人数的2倍,根据三种工艺品生产人数的和为65,从而得出y与x的函数关系式,(3)由于B工艺品每件盈利,随着x的变化而变化,得出B工艺品的每件盈利与x的关系,再根据总利润,等于三种工艺品的利润之和,得出W与x的二次函数关系,但,最大值时,蹦为顶点坐标,因为y不为整数,因此要根据抛物线的增减性,确定x为何整数时,W最大【解答】解(1)设制作一件A获利x元,则制作一件B获利(105x)元,由题意得,解得x15,经检验,x15是原方程的根,当x15时,x105120,答制作一件A获利15元,制作一件B获利120元(2)设每天安排x人制作B,y人制作A,则2y人制作C,于是有yx2y65,yx答y与x之间的函数关系式为yx(3)由题意得W152y1202(x5)x2y302x2130 x90y,又yxW2x2130 x90y2x2130 x90(x)2x2100 x1950,W2x2100 x1950,对称轴为x25,而x25时,y的值不是整数,根据抛物线的对称性可得当x26时,W最大22621002619503198元此时制作A产品的13人,B产品的26人,C产品的26人,获利最大,最大利润为3198元【点评】考查分式方程及应用、一次函数的性质、二次函数的图象和性质等知识,但在利用二次函数的增减性时,有时还要根据实际情况,在对称轴的两侧取合适的值时,求出函数的最值,这一点容易出现错误23(11分)(1)【探究发现】如图1,EOF的顶点O在正方形ABCD两条对角线的交点处,EOF90,将EOF绕点O旋转,旋转过程中,EOF的两边分别与正方形ABCD的边BC和CD交于点E和点F(点F与点C,D不重合)则CE,CF,BC之间满足的数量关系是CECFBC(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“BCD120的菱形ABCD”,其他条件不变,当EOF60时,上述结论是否仍然成立若成立,请给出证明;若不成立,请猜想结论并说明理由(3)【拓展延伸】如图3,BOD120,OD,OB4,OA平分BOD,AB,且OB2OA,点C是OB上一点,
展开阅读全文